Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cimicidol-3-one: a cycloartenol triterpenoid from the rhizomes of Cimicifuga racemosa

The title compound [systematic name: $(20 R, 24 R)-11 \beta, 24,25-$ trihydroxy-9,19-cyclolanost-7-ene-3,16,23-trione], $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{6}$, is a cycloartenol triterpenoid which was isolated from the rhizomes of Cimicifuga racemosa. The molecule contains three six-membered rings adopting chair and distorted boat conformations, a five-membered ring exhibiting an envelope conformation and a three-membered ring. The molecules are linked by three hydrogen bonds, forming a two-dimensional structure parallel to the (001) plane.

Comment

Cimicifuga racemosa (L.) Nutt. (black cohosh, black snakeroot) is a herb indigenous to North America and Europe. In the middle of the 20th century it was introduced to several countries in western Europe and has gained increasing importance for the treatment of menopausal complaints (e.g. hot flushes, depression) and dysmenorrhea (Kristian et al., 2001). Our investigation of the bioactive constituents of the rhizomes of C. racemosa led to the isolation of cimicidol-3one, (I). The structure of (I) was elucidated by spectroscopic analysis, including two-dimensional NMR, and was confirmed by single-crystal X-ray diffraction analysis, the results of which are presented here.

(I)

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The molecule contains three sixmembered rings (A, atoms $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{C} 10 ; B, \mathrm{C} 5-\mathrm{C} 10$; and $C, \mathrm{C} 8 /$ $\mathrm{C} 9 / \mathrm{C} 11-\mathrm{C} 14$), a five-membered ring ($D, \mathrm{C} 13-\mathrm{C} 17$) and a three-membered ring (C9/C10-C19). Ring A adopts a chair conformation, while rings B and C adopt distorted boat conformations as a result of the $\mathrm{C} 7=\mathrm{C} 8$ double bond. Ring D exhibits an envelope conformation. All rings are trans fused.

In the crystal structure of (1), The molecules are connected by three hydrogen bonds, forming a two-dimensional structure parallel to the (001) plane.

Received 18 January 2006
Accepted 17 February 2006

[^0]
Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.050$
$w R$ factor $=0.137$
Data-to-parameter ratio $=10.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Figure 1
View of the molecule of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Note that the chirality was not determined.

Experimental

The ethanol extract was purchased from Jiahe Phytochem Co., Ltd, Shanxi province, People's Republic of China. The extract (1 kg) was suspended in water and then partitioned successively with petroleum ether, ethyl acetate and $n-\mathrm{BuOH}(4 \times 3000 \mathrm{ml})$. The ethyl acetate extract (336 g) was divided into 8 fractions (Fr. 1-Fr. 8) by chromatography on a silica gel column ($2 \mathrm{~kg}, 160-200 \mathrm{mesh}$) eluted with chloroform-methanol (gradients 20:1-1:1). Fr. 5 (18 g) was rechromatographed over silica gel ($300 \mathrm{~g}, 200-300 \mathrm{mesh}$) and eluted with petroleum ether-acetone (7:1-1:1) to afford the pure title compound (I) (m.p. 471-473 K). Suitable crystals were obtained by slow evaporation of a methanol solution at room temperature. ${ }^{13} \mathrm{C}$ NMR (125 MHz , pyridine-d ${ }_{5}$, δ, p.p.m.): 218.2 (C16), 215.4 (C3), 213.7 (C23), 147.1 (C8), 115.1 (C7), 84.0 (C24), 72.4 (C25), 62.8 (C11), 61.3 (C17), 49.6 (C15), 48.9 (C4), 47.5 (C22), 46.9 (C12), 46.0 (C14), 45.3 (C5), 44.3 (C13), 37.0 (C2), 28.9 (C1), 28.9 (C10), 28.2 (C9), 27.9 (C27), 27.5 (C28), 27.4 (C29), 27.3 (C20), 25.7 (C26), 22.7 (C30), 22.1 (C6), 20.2 (C21), 20.2 (C18), 18.0 (C19).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{6} \\
& M_{r}=500.65 \\
& \text { Monoclinic, } P 2_{1} \\
& a=8.809(1) \AA \\
& b=9.236(2) \AA \\
& c=16.944(3) \AA \\
& \beta=91.88(1)^{\circ} \\
& V=1377.9(4) \AA^{\circ} \\
& Z=2
\end{aligned}
$$

$$
D_{x}=1.207 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 29 reflections
$\theta=3.4-14.7^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, colourless $0.52 \times 0.50 \times 0.44 \mathrm{~mm}$

Data collection

> Siemens P4 diffractometer ω scans
> Absorption correction: none
> 3702 measured reflections 3368 independent reflections 2585 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ} \\
& h=0 \rightarrow 11 \\
& k=0 \rightarrow 12 \\
& l=-22 \rightarrow 22 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: } 5.7 \%
\end{aligned}
$$

Refinement

[^1]Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

O1-C3	1.202 (4)	O5-C24	1.446 (5)
O2-C11	1.433 (4)	O6-C25	1.432 (5)
O3-C16	1.209 (3)	C7-C8	1.327 (3)
O4-C23	1.206 (4)		
C3-C2-C1	110.3 (3)	C12-C13-C14	107.7 (2)
O1-C3-C2	122.1 (3)	C18-C13-C14	111.0 (2)
C2-C3-C4	115.6 (3)	C8-C14-C15	116.2 (2)
C7-C8-C9	121.4 (2)	O3-C16-C17	126.3 (2)
C8-C9-C19	116.8 (2)	C17-C16-C15	110.5 (2)
C19-C9-C10	58.65 (18)	O4-C23-C24	117.8 (4)
C19-C9-C11	117.8 (2)	C23-C24-C25	116.8 (3)
C19-C10-C1	119.5 (3)	O6-C25-C27	108.0 (5)
O2-C11-C9	108.4 (2)	C27-C25-C26	112.0 (4)
C12-C11-C9	116.3 (2)		
C1-C2-C3-O1	-124.5 (4)	C14-C15-C16-O3	-176.1 (3)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	128.0 (4)	C14-C15-C16-C17	6.7 (4)
C2-C3-C4-C5	-52.8 (4)	C16-C17-C20-C21	-178.3 (3)
C6-C7-C8-C9	5.9 (5)	C16-C17-C20-C22	58.8 (3)
C7-C8-C9-C10	-19.1 (4)	C21-C20-C22-C23	123.4 (3)
C11-C9-C10-C19	-106.4 (3)	$\mathrm{C} 20-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	158.6 (3)
C19-C9-C10-C1	109.5 (3)	O4-C23-C24-O5	2.3 (5)
C11-C9-C10-C1	3.0 (4)	C22-C23-C24-O5	-178.9 (3)
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	123.9 (3)	O5-C24-C25-O6	177.5 (3)
C11-C12-C13-C14	46.1 (4)	O5-C24-C25-C27	-65.6 (5)
C7-C8-C14-C13	-145.4 (3)	C23-C24-C25-C27	55.4 (5)

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 2 O \cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.03	$2.830(3)$	165
O5-H5O $^{\mathrm{H}} \mathrm{O}^{\mathrm{ii}}$	0.82	2.06	$2.555(4)$	119
${\text { O6-H6O } \cdots \mathrm{O}^{\mathrm{ii}}}^{2}$	0.82	2.12	$2.908(4)$	161

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1, y-\frac{1}{2},-z+1$.
All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}$ distances of $0.93-0.98 \AA, \mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. The absolute configuration could, however, be assigned by reference to a chiral molecule of known absolute configuration (Mamoru et al., 1995).

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the staff of the analytical group of Chengdu Institute of Biology, Chinese Academy of Sciences for measuring the NMR spectra.

References

Wende, K., Mugge, C., Thurow, K., Schopke, T. \& Lindequist, U. (2001). J. Nat. Prod. 64, 986-989.
Mamoru, K., Yoshinobu, A., Nobuko, S. \& Masahiro, N. (1995). Chem. Pharm. Bull. 43, 771-776.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SHELXTL (Version 5.10) and XSCANS (Version 2.1). Siemens Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
 $w R\left(F^{2}\right)=0.137$
 $S=0.98$
 3368 reflections
 336 parameters
 H-atom parameters constrained

